Chemopreventive Effects of Curcumin Against 7,12-Dimethylbenz[a]anthracene-Induced Hamster Buccal Pouch Carcinogenesis
Curcumin and Chemoprevention
DOI:
https://doi.org/10.5195/d3000.2024.559Nøgleord:
oral squamous cell carcinoma, curcumin, chemopreventionResumé
BACKGROUND: Chemoprevention is an important means that has a high potential to reverse, prevent or suppress the development of cancer in initial stages or the development of pre-cancerous cells to the cancer stage.
OBJECTIVE: This study aimed to investigate the potential protective effect of curcumin as a chemopreventive agent against induced oral squamous cell carcinoma in Syrian hamster.
MATERIALS AND METHODS: In this experimental study, forty male Syrian hamsters were divided equally into two main groups. The carcinogenic DMBA was only applied to the control group (g1 = 20 hamsters) by topical painting in the buccal pouch, as for the experimental group (g2 = 20 hamsters) curcumin was administered orally (80 mg\kg) concurrently with the DMBA. The animals were sacrificed at consecutive periods (after 2, 6, 10 and 14 weeks), then the histopathological changes in the buccal pouches were studied by H&E staining, and the VEGF expression during the previous sacrifice periods was studied. The Kruskal–Wallis test was used to study the significance of differences in VEGF expression between the two groups at the level of confidence 95%.
RESULTS: P-value = 0.116>0.05 - 0.005<0.05 - 0.007<0.05 - 0.006<0.05, in 2, 6, 10 and 14 weeks respectively. Thus, the statistically significant differences in VEGF expression were found in the second, third and fourth sacrifice period between group 1 and group 2.
CONCLUSION: Curcumin had chemopreventive effects against DMBA-induced buccal pouch OSCC through the modulating effect on the abnormal expression of VEGF.
Referencer
Worst pattern of invasion and other histopathological features in oral cancer as determinants of prognosis and survival rate: A retrospective cohort analysis. Marzouki HZ, Bukhari AF, Al-Ghamdi DA, Abdullah RM, Al-Hajeili M, Khayyat S, Alzahrani RM, Alotaibi YR, Al-Wassia R, Al-Marzouki H, Merdad M. Oncol Lett. 2023 Jan;25(2):75-85. doi: 10.3892/ol.2023.13661. PMID: 36688107.
Impact of vascular endothelial growth factor gene-gene and gene-smoking interaction and haplotype combination on bladder cancer risk in Chinese population. Fu D, Li P, Cheng W, Tian F, Xu X, Yi X, Tang C, Wang Y, Hu Q, Zhang Z. Oncotarget. 2017 Apr;8(14):22927-22935. doi: 10.18632/oncotarget.15287. PMID: 28206971.
Expression of vascular endothelial growth factor in oral squamous cell carcinoma. Kim SK, Park SG, Kim KW. J Korean Assoc Oral Maxillofac Surg. 2015;41(1):11-18.
Molecular basis of angiogenesis and cancer. Tonini T, Rossi F, Claudio PP. Oncogene. 2003 Sep;22(42):6549-2556. doi: 10.1038/sj.onc.1206816. PMID: 14528279.
Immunohistochemical evaluation of tumor angiogenesis and the role of mast cells in oral squamous cell carcinoma. Kabiraj A, Jaiswal R, Singh A, Gupta J, Singh A, Samadi FM. J Cancer Res Ther. 2018 Apr-Jun;14(3):495-502. doi: 10.4103/0973-1482.163693. PMID: 29893305.
The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma. Zhou H, Yang YH, Binmadi NO, Proia P, Basile JR. Exp Cell Res. 2012 Aug;318(14):1685-1698. doi: 10.1016/j.yexcr.2012.04.019. PMID: 22652457.
The molecular pathology of cancer. Harris TJ, McCormick F. Nat Rev Clin Oncol. 2010 May;7(5):251-265. doi: 10.1038/nrclinonc.2010.41. PMID: 20351699.
Biomarkers in diagnosis and therapy of oral squamous cell carcinoma: A review of the literature. Blatt S, Krüger M, Ziebart T, Sagheb K, Schiegnitz E, Goetze E, Al-Nawas B, Pabst AM. J Craniomaxillofac Surg. 2017 May;45(5):722-730. doi: 10.1016/j.jcms.2017.01.033. PMID: 28318929.
Autophagy and multidrug resistance in cancer. Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM, Chen ZS. Chin J Cancer. 2017 Jun;36(1):52-61. doi: 10.1186/s40880-017-0219-2. PMID: 28646911.
New concepts in nutraceuticals as alternative for pharmaceuticals. Nasri H, Baradaran A, Shirzad H, Rafieian-Kopaei M. Int J Prev Med. 2014 Dec;5(12):1487-1499. PMID: 25709784.
The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes. Saldanha SN, Tollefsbol TO. J Oncol. 2012;2012:192464. doi: 10.1155/2012/192464. PMID: 22187555.
Mechanistic considerations in chemopreventive drug development. Kelloff GJ, Boone CW, Steele VE, Fay JR, Lubet RA, Crowell JA, Sigman CC. J Cell Biochem Suppl. 1994;56(20):1-24. doi: 10.1002/jcb.240560903. PMID: 7616736.
Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Sporn MB, Dunlop NM, Newton DL, Smith JM. Fed Proc. 1976 May;35(6):1332-1338. PMID: 770206.
Chemopreventive and therapeutic effects of curcumin. Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M, Diederich M. Cancer Lett. 2005 Jun;223(2):181-190. doi: 10.1016/j.canlet.2004.09.041. PMID: 15896452.
Anticancer potential of curcumin: preclinical and clinical studies. Aggarwal BB, Kumar A, Bharti AC. Anticancer Res. 2003 Jan-Feb;23(1A):363-398. PMID: 12680238.
Potential anticancer activity of turmeric (Curcuma longa). Kuttan R, Bhanumathy P, Nirmala K, George MC. Cancer Lett. 1985 Nov;29(2):197-202. doi: 10.1016/0304-3835(85)90159-4. PMID: 4075289.
Turmeric and curcumin: Biological actions and medicinal applications. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK. Current science. 2004;87:44-53.
Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY. Anticancer Res. 2001 Jul-Aug;21(4B):2895-2900. PMID: 11712783.
Curcumin, a Multifaceted Hormetic Agent, Mediates an Intricate Crosstalk between Mitochondrial Turnover, Autophagy, and Apoptosis. Rainey NE, Moustapha A, Petit PX. Oxid Med Cell Longev. 2020 Jul;2020:3656419. doi: 10.1155/2020/3656419. PMID: 32765806.
Curcumin for chemoprevention of colon cancer. Johnson JJ, Mukhtar H. Cancer Lett. 2007 Oct;255(2):170-181. doi: 10.1016/j.canlet.2007.03.005. PMID: 17448598.
The multifaceted role of curcumin in cancer prevention and treatment. Shanmugam MK, Rane G, Kanchi MM, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Tan BK, Kumar AP, Sethi G. Molecules. 2015 Feb;20(2):2728-2769. doi: 10.3390/molecules20022728. PMID: 25665066.
Biological and therapeutic activities, and anticancer properties of curcumin. Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, DE Lillo A, Laino L, Lo Muzio L. Exp Ther Med. 2015 Nov;10(5):1615-1623. doi: 10.3892/etm.2015.2749. PMID: 26640527.
Curcumin is an in vivo inhibitor of angiogenesis. Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR. Mol Med. 1998 Jun;4(6):376-383. PMID: 10780880.
Molecular mechanisms of anti-angiogenic effect of curcumin. Gururaj AE, Belakavadi M, Venkatesh DA, Marmé D, Salimath BP. Biochem Biophys Res Commun. 2002 Oct;297(4):934-942. doi: 10.1016/s0006-291x(02)02306-9. PMID: 12359244.
Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Binion DG, Otterson MF, Rafiee P. Gut. 2008 Nov;57(11):1509-1517. doi: 10.1136/gut.2008.152496. PMID: 18596194.
Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. Rahmani AH, Al Zohairy MA, Aly SM, Khan MA. Biomed Res Int. 2014;2014:761608. doi: 10.1155/2014/761608. PMID: 25295272.
Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Bae MK, Kim SH, Jeong JW, Lee YM, Kim HS, Kim SR, Yun I, Bae SK, Kim KW. Oncol Rep. 2006 Jun;15(6):1557-1562. PMID: 16685395.
Anti cancer effects of curcumin: cycle of life and death. Sa G, Das T. Cell Div. 2008 Oct;3:1-14. doi: 10.1186/1747-1028-3-14. PMID: 18834508.
Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Huang MT, Lysz T, Ferraro T, Abidi TF, Laskin JD, Conney AH. Cancer Res. 1991 Feb;51(3):813-819. PMID: 1899046.
Curcumin suppresses growth of head and neck squamous cell carcinoma. LoTempio MM, Veena MS, Steele HL, Ramamurthy B, Ramalingam TS, Cohen AN, Chakrabarti R, Srivatsan ES, Wang MB. Clin Cancer Res. 2005 Oct;11(19 Pt 1):6994-7002. doi: 10.1158/1078-0432.CCR-05-0301. PMID: 16203793.
Curcumin inhibits NFkappaB mediated radioprotection and modulate apoptosis related genes in human neuroblastoma cells. Aravindan N, Madhusoodhanan R, Ahmad S, Johnson D, Herman TS. Cancer Biol Ther. 2008 Apr;7(4):569-576. doi: 10.4161/cbt.7.4.5534. PMID: 18305409.
Curcumin downregulates the constitutive activity of NF-kappaB and induces apoptosis in novel mouse melanoma cells. Marín YE, Wall BA, Wang S, Namkoong J, Martino JJ, Suh J, Lee HJ, Rabson AB, Yang CS, Chen S, Ryu JH. Melanoma Res. 2007 Oct;17(5):274-283. doi: 10.1097/CMR.0b013e3282ed3d0e. PMID: 17885582.
Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor kappaB by an AKT-independent pathway. Wang D, Veena MS, Stevenson K, Tang C, Ho B, Suh JD, Duarte VM, Faull KF, Mehta K, Srivatsan ES, Wang MB. Clin Cancer Res. 2008 Oct;14(19):6228-6236. doi: 10.1158/1078-0432.CCR-07-5177. PMID: 18829502.
Chemopreventive efficacy of curcumin and piperine during 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Manoharan S, Balakrishnan S, Menon VP, Alias LM, Reena AR. Singapore Med J. 2009 Feb;50(2):139-146. PMID: 19296028.
Chemopreventive effect of green tea and curcumin in induced oral squamous cell carcinoma: an experimental study. Saleh MM, Darwish ZE, El Nouaem MI, Mourad GM, Ramadan OR. Alexandria Dental Journal. 2020;45(3):74-80.
Inhibition of DMBA-induced Oral Squamous Cells Carcinoma Growth by Brazilian Red Propolis in Rodent Model. Ribeiro DR, Alves ÂV, dos Santos EP, Padilha FF, Gomes MZ, Rabelo AS, Cardoso JC, Massarioli AP, de Alencar SM, de Albuquerque-Júnior RL. Basic Clin Pharmacol Toxicol. 2015 Aug;117(2):85-95. doi: 10.1111/bcpt.12374. PMID: 25556639.
Effect of docosahexaenoic acid as a chemopreventive agent on experimentally induced hamster buccal pouch carcinogenesis. Alqalshy EM, Ibrahim AM, Abdel-Hafiz AA, Kamal KAE, Alazzazi MA, Omar MR, Abdel-Wahab AS, Mohammed SS. Cancer Treat Res Commun. 2022;31:100558. doi: 10.1016/j.ctarc.2022.100558. PMID: 35443225.
The Usage of Curcumin as Chemopreventive Agent for Oral Squamous Cell Carcinoma: An Experimental Study on Sprague-Dawley Rat. Maulina T, Widayanti R, Hardianto A, Sjamsudin E, Pontjo B, Yusuf HY. Integr Cancer Ther. 2019 Jan-Dec;18:1534735418822094. doi: 10.1177/1534735418822094. PMID: 30616418.
Bcl-2 and c-Myc expression in oral dysplasia and oral squamous cell carcinoma: An immunohistochemical study to assess tumor progression. Pallavi N, Nalabolu GRK, Hiremath SKS. J Oral Maxillofac Pathol. 2018 Sep-Dec;22(3):325-331. doi: 10.4103/jomfp.JOMFP_197_18. PMID: 30651675.
Evaluation of anticarcinogenic effects of Clerodendron inerme on 7,12-dimethylbenz(a) anthracene-induced hamster buccal pouch carcinogenesis. Manoharan S, Kavitha K, Senthil N, Renju GL. Singapore Med J. 2006 Dec;47(12):1038-1043. PMID: 17139399.
Anti-tumor initiating potential of andrographolide in 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. Manoharan S, Singh AK, Suresh K, Vasudevan K, Subhasini R, Baskaran N. Asian Pac J Cancer Prev. 2012;13(11):5701-5708. doi: 10.7314/apjcp.2012.13.11.5701. PMID: 23317242.
Carnosic acid: a potent chemopreventive agent against oral carcinogenesis. Manoharan S, Vasanthaselvan M, Silvan S, Baskaran N, Kumar Singh A, Vinoth Kumar V. Chem Biol Interact. 2010 Dec;188(3):616-622. doi: 10.1016/j.cbi.2010.08.009. PMID: 20816777.
Chemopreventive potential of apigenin in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Silvan S, Manoharan S, Baskaran N, Anusuya C, Karthikeyan S, Prabhakar MM. Eur J Pharmacol. 2011 Nov;670(2-3):571-577. doi: 10.1016/j.ejphar.2011.09.179. PMID: 21970806.
Regulation of Polyamine Metabolism by Curcumin for Cancer Prevention and Therapy. Murray-Stewart T, Casero RA. Med Sci (Basel). 2017 Dec;5(4):38-51. doi: 10.3390/medsci5040038. PMID: 29258259.
Effect of curcumin and ferulic acid on modulation of expression pattern of p53 and bcl-2 proteins in 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Balakrishnan S, Manoharan S, Alias LM, Nirmal MR. Indian J Biochem Biophys. 2010 Feb;47(1):7-12. PMID: 21086748.
Antigenotoxic Effects of Curcumin and Piperine Alone or in Combination Against 7,12-Dimethylbenz(a)anthracene Induced Genotoxicity in Bone Marrow of Golden Syrian Hamsters. Balakrishnan S, Vellaichamy L, Menon VP, Manoharan S. Toxicol Mech Methods. 2008 Jan;18(9):691-696. doi: 10.1080/15376510701781520. PMID: 20020926.
The dark side of curcumin. Burgos-Morón E, Calderón-Montaño JM, Salvador J, Robles A, López-Lázaro M. Int J Cancer. 2010 Apr;126(7):1771-1775. doi: 10.1002/ijc.24967. PMID: 19830693.
Publiceret
Nummer
Sektion
Licens
Copyright (c) 2024 Maher Al-assaf, Nabil Kochaji, Shaza Al laham, Issa Al-Assaf, Caroline Mousallam, Charif Barakat
Dette værk er under følgende licens Creative Commons Navngivelse (by).
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.