Impact of Fixed Orthodontic Appliances on Staphylococcus aureus and Candida albicans

Authors

  • Maryam Aljbouri University of Babylon, College of Dentistry, Hillah, Iraq
  • Nebras Al-Dabbagh
  • Thaer Jaber Al-Khafaji

DOI:

https://doi.org/10.5195/d3000.2025.975

Keywords:

fixed orthodontic appliances, Oral Staphylococcus aureus, Oral Candida albicans, Antimicrobial Resistance, Disk Diffusion Method

Abstract

Objective: This study investigated the prevalence of salivary S. aureus and C. albicans in patients with fixed orthodontic appliances and assessed their resistance profiles to selected antibacterial and antifungal agents over three-time intervals. Material and Methods: A prospective cohort of 40 patients (20 males, 20 females) undergoing orthodontic treatment was followed across three time points: baseline (T0), two weeks post-application (T1), and four weeks post-application (T2). Unstimulated saliva samples were collected and cultured for microbial identification. Organisms were confirmed via Vitek biochemical testing. Antimicrobial susceptibility was determined using the disc diffusion method against six antibacterial and six antifungal agents. Data were analyzed using two way-ANOVA and chi-square tests. Results: Among the 80 total samples analyzed, 73.75% were positive for S. aureus and/or C. albicans. S. aureus was most prevalent, with Clindamycin and Vancomycin showing the strongest antibacterial activity. Resistance to Amoxicillin, Ampicillin, and Erythromycin was notably high. For C. albicans, Fluconazole and Amphotericin B demonstrated the highest efficacy, while Clotrimazole and Nystatin showed poor inhibition. Resistance patterns might suggest a biofilm-associated microbial adaptation and reduced susceptibility over time. Conclusion: Fixed orthodontic appliances significantly influence oral microbial ecology by facilitating colonization of resistant strains of S. aureus and C. albicans. The findings highlight the importance of routine microbial surveillance and personalized antimicrobial strategies in orthodontic care to mitigate infection risks and manage emerging resistance.

References

Lucchese A, bondemark L. The influence of orthodontic treatment on oral microbiology. Biological mechanisms of tooth movement, 2021: 139–158.

Mazin H, Salman SA, Salah R. The effect of fixed orthodontic appliances on gingival health diode laser versus scalpel gingivectomy view project periodontology view project. IOSR Journal of dental and medical sciences (IOSR-JDMS), 15(11), 2016: 82–88. Available at: https://doi.Org/10.9790/0853-1517078288.

Deo PN, Deshmukh R. Oral microbiome: unveiling the fundamentals. journal of oral and maxillofacial pathology. JOMFP. 2019; 23(1), p. 122.

Kado I, Hisatsune J, Tsuruda K, Tanimoto K, Sugai M. The impact of fixed orthodontic appliances on oral microbiome dynamics in Japanese patients. Sci Rep. 2020;10(1):21989. doi: 10.1038/s41598-020-78971-2.

Kim SH, Choi DS, Jang I, Cha BK, Jost-Brinkmann PG, Song JS. Microbiologic changes in subgingival plaque before and during the early period of orthodontic treatment. Angle Orthod. 2012 ;82(2):254-60. doi: 10.2319/030311-156.1.

Rojo P et al. (2010). Community-associated S. Aureus infections in children. Expert rev anti infect ther, 8, 541–554.

Ryu,s.; Song, P.I.; Seo, C.H.; Cheong, H.; Park, Y. Colonization and infection of the skin by S. Aureus: immune system evasion and the response to cationic antimicrobial peptides. Int. J. Mol. Sci. 2014, 15, 8753–8772.

Kale, P. & Dhawan, B. (2016). The changing face of community-acquired methicillin-resistant staphylococcus aureus. Indian J. Med. Microbiol., 34, 275–285.

Casanova, G.N.; Ruiz, S.M.; Bellido, M.J.L. Mechanisms of resistance to daptomycin in staphylococcus aureus. Rev. Española quimioter. (2017), 30, 391–396.

Sirichoat, A.; Lulitanond, A.; Kanlaya, R.; Tavichakorntrakool, R.; Chanawong, A.; Wongthong, S.; Thongboonkerd, V. Phenotypic characteristics and comparative proteomics of staphylococcus aureus strains with different vancomycin-resistance levels. Diagn. Microbiol. Infect. Dis. 2016, 86, 340–344.

Romaniuk, J.A.; Cegelski, L. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philos. Trans. R. Soc. B biol. Sci. 2015, 370.

Al-tekreeti AR, al-halbosiy MMF, dheeb BI, hashim AJ, al-zuhairi AFH. Molecular identification of clinical candida isolates by simple and randomly amplified polymorphic DNA-PCR. Arab J. Sci. Eng. (2017); doi 10.1007/s13369-017-2762-1.

Hussain AF, sulaiman GM, dheeb BI, hashim AJ, seddiq SH. Improving conditions for gliotoxin production by local isolates of aspergillus fumigatus. Journal of biotechnology research center. (2017); 11(2):14-24.

Ayesha A. Prevalence, antifungal susceptibility and biofilm characterization of candida species isolated from tertiary care hospitals, 2016; quaid-i-azam university, islamabad, pakistan.(2018); 1-22.

Khanpayeh E, Jafari AA, Tabatabaei Z. Comparison of salivary Candida profile in patients with fixed and removable orthodontic appliances therapy. Iran J Microbiol. 2014 Aug;6(4):263-8.

Al-Harba, Huda Reyad; Nasir-Alla, Nebrass; Jabir, Azher Abdulhafidh. The Correlation between Oral Candida albicans and Interlukine-23 in Diabetic Patients in Hilla City, Iraq. Medical Journal of Babylon 21(4):p 915-920, October-December 2024. | DOI: 10.4103/MJBL.MJBL_517_23.

Alhamadi W, Al-Saigh RJ, Al-Dabagh NN, Al-Humadi HW. Oral Candida in Patients with Fixed Orthodontic Appliance: In Vitro Combination Therapy. Biomed Res Int. (2017); 2017:1802875. doi: 10.1155/2017/1802875.

Navazesh, M. And kumar, S. K. 2008. Measuring salivary flow: challenges and opportunities. The journal of the american dental association, 139, 35S-40S.

Kaushik, R., Yeltiwar, R. K. And pushpanshu, K. 2011. Salivary interleukin‐1β levels in patients with chronic periodontitis before and after periodontal phase I therapy and healthy controls: A case‐control study. Journal of periodontology, 82, 1353-1359

James C, natalie S. Microbiology. A laboratory manual. Pearson education, 2014. Available from: https://lib.Hpu.Edu.Vn/handle/123456789/28998

Hudzicki J. Kirby-bauer disk diffusion susceptibility test protocol. American society for microbiology. 2009;15:55-63.

Scognamiglio T, Zinchuk R, Gumpeni P, Larone DH. Comparison of inhibitory mold agar to Sabouraud dextrose agar as a primary medium for isolation of fungi. J Clin Microbiol. 2010 May;48(5):1924-5. doi: 10.1128/JCM.01814-09.

Nadeem, S.G., Hakim, S.T. And kazmi, S.U. (2010) ‘use of chromagar candida for the presumptive identification of candida species directly from clinical specimens in resource-limited settings’, libyan journal of medicine, 5(1).

Abdulbaqi NJ, dheeb BI, irshad R. Expression of biotransformation and antioxidant genes in the liver of albino mice after exposure to aflatoxin B1 and an antioxidant sourced from turmeric (curcuma longa). Jordan journal of biological sciences. (2018); 11(2) 89 – 93.

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge.

Wade, W.G. The oral microbiome in health and disease, pharmacological research, (2013); 69(1), pp. 137–143.

Salman, S.A. And salah, R. (2016) ‘the effect of fixed orthodontic appliances on gingival health diode laser versus scalpel gingivectomy view project periodontology view project’, IOSR journal of dental and medical sciences (IOSR-JDMS), 15(11), pp. 82–88. Available at: https://doi.Org/10.9790/0853- 1517078288.

Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, Murciano C, Blagojevic M, Thavaraj S, Förster TM, Hebecker B, Kasper L, Vizcay G, Iancu SI, Kichik N, Häder A, Kurzai O, Luo T, Krüger T, Kniemeyer O, Cota E, Bader O, Wheeler RT, Gutsmann T, Hube B, Naglik JR. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016 Apr 7;532(7597):64-8. doi: 10.1038/nature17625.

Ali T, basit A, karim AM, lee J-H, jeon J-H, lee S H. Mutation-based antibiotic resistance mechanism in methicillin-resistant staphylococcus aureus clinical isolates. Pharmaceuticals. Https://doi.Org/10.3390/ph14050420 18. (2021);14(5):420.

Nobile CJ, johnson AD. (2015). Candida albicans biofilms and human disease. Annu rev microbiol, 69:71–92.

Parastan R, kargar M, solhjoo K, kafilzadeh F. A synergistic association between adhesion-related genes and multidrug resistance patterns of staphylococcus aureus isolates from different patients and healthy individuals. Journal of global antimicrobial resistance. 2020;22:379-85. Https://doi.Org/10.1016/j.Jgar.2020.02.025

Abbasi Montazeri, E., Khosravi, A.D., Khazaei, S. et al. Prevalence of methicillin resistance and superantigenic toxins in Staphylococcus aureus strains isolated from patients with cancer. BMC Microbiol 21, 262 (2021). https://doi.org/10.1186/s12866-021-02319-7

Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest. 2014 Jul;124(7):2836-40. doi: 10.1172/JCI68834.

Achkar JM, fries BC. Candida infections of the genitourinary tract. Clinical microbiology reviews. (2010); 23(2), 253–273.

Abdalwahd N., Al-Saigh R.J., Al-Humadi H.W. Assessment of antifungal drugs’ activity against some Candida albicans isolates in the presence or absence of human albumin: a study employing an in vitro pharmacokinetics / pharmacodynamics model. Rev. Clin. Pharmacol. Pharmacokinet. Int. Ed. 38(Sup2): 39-42 (2024). https://doi.org/10.61873/SEXH5182

Bhavan, P., Rajkumar, R, Subramanian, Radhakrishnan, Seenivasan, Dr. Chandrasekar & Kannan, Soundarapandian. Culture and Identification of Candida Albicans from Vaginal Ulcer and Separation of Enolase on SDS-PAGE. International Journal of Biology. (2010); Vol 2. 10.5539/ijb.v2n1p84.

Abbas, Nada Fadhil. Comparison between Conventional Methods and Molecular Diagnosis for Candida albicans and Candida dubliniensis isolated from Cancer Patients Infected with Oral Candidiasis. Medical Journal of Babylon 21(Suppl 2):p S276-S281, November 2024. | DOI: 10.4103/MJBL.MJBL_1079_23

Downloads

Published

2025-08-21

Issue

Section

Mechanisms of Oral Disease