Potential of Salivary IL-36γ, IL-38, and RANKL in Differentiating Periodontal Health from Periodontitis
DOI:
https://doi.org/10.5195/d3000.2025.1008Keywords:
Periodontitis, Periodontal Diseases, Citokines, InflammationAbstract
Objective: To evaluate the diagnostic potential of combined salivary biomarkers RANKL, IL-36γ, and IL-38 in distinguishing individuals with generalized unstable periodontitis from those with a healthy periodontium, by analyzing their concentrations and correlation with clinical periodontal parameters. Material and Methods: A total of 120 participants were included in this case-control study, comprising 90 subjects with generalized unstable periodontitis and 30 periodontally healthy controls. Clinical periodontal measurements, PI, PPD, CAL, and BOP, were recorded. Before data collection, inter- and intra-examiner calibration were performed on five subjects each, using kappa and intraclass correlation coefficients to ensure measurement reliability (>70% for BOP and >90% for PPD and CAL). Unstimulated saliva samples were collected, preserved in antiprotease solution, and stored on ice, then frozen for laboratory analysis. Salivary concentrations of RANKL, IL-36γ, and IL-38 were measured using ELISA kits. Data analysis included comparison between groups, correlation with clinical parameters, and diagnostic evaluation through sensitivity, specificity, and AUC analysis. Data were analyzed using SPSS v29 and GraphPad Prism v9. Normality was assessed using the Shapiro-Wilk test. Parametric tests (ANOVA, t-test) and non-parametric tests (Kruskal-Wallis, Mann-Whitney) were applied as appropriate. Correlations were evaluated using Spearman’s test. Diagnostic accuracy was assessed through ROC curve analysis and AUC values, with statistical significance set at p < 0.05. Results: RANKL and IL-36γ salivary levels in periodontitis were significantly increased compared to healthy controls, while IL-38 levels were significantly reduced (p < 0.001). RANKL peaked in stage III, while IL-36γ was highest in stage IV. Conversely, IL-38 was consistently lower in both disease stages. Only IL-36γ with CAL correlation was a significant positive, while other clinical correlations were not statistically significant different. ROC analysis demonstrated excellent diagnostic accuracy for all three biomarkers in differentiating periodontal health from disease, with AUC values of 0.944 (RANKL), 0.982 (IL-36γ), and 0.960 (IL-38), along with high sensitivity and specificity. Conclusion: Salivary levels of RANKL, IL-36γ, and IL-38 demonstrated strong potential as non-invasive biomarkers for distinguishing generalized unstable periodontitis from periodontal health. Their diagnostic accuracy supports their utility in early detection and monitoring, although they showed limited ability to differentiate between periodontitis severity stages.
References
References
Chapple IL, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri‐Implant Diseases and Conditions. Journal of Periodontology. 2018; 89: S74-S84.
Trindade, D., Carvalho, R., Machado, V., Chambrone, L., Mendes, J. J., & Botelho, J. (2023). Prevalence of periodontitis in dentate people between 2011 and 2020: A systematic review and meta-analysis of epidemiological studies. Journal of clinical periodontology, 50(5), 604–626.
Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. Journal of dental research. 2014 Nov; 93(11): 1045-53.
GBD 2017 ORAL DISORDERS COLLABORATORS, et al. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: a systematic analysis for the Global Burden of Disease 2017 study. Journal of dental research, 2020, 99.4: 362-373.
Tonetti, Maurizio S., et al. Impact of the global burden of periodontal diseases on health, nutrition, and well-being of mankind: A call for global action. Journal of clinical periodontology, 2017, 44.5: 456-462.
Graziani, Filippo; TSAKOS, Georgios. Patient‐based outcomes and quality of life. Periodontology 2000, 2020, 83.1: 277-294.
Tsuchida, Satoshi, et al. Dark matter signals on a laser interferometer. Physical Review D, 2020, 101.2: 023005.
Liccardo, Daniela, et al. Periodontal disease: a risk factor for diabetes and cardiovascular disease. International Journal of Molecular Sciences, 2019, 20, 6: 1414.
Asher, Wesley B., et al. GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision. Cell, 2022, 185.10: 1661-1675.e16.
Papapanou PN, Sanz M, et al. Periodontitis: Consensus report of Workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Pre-Implant Diseases and Conditions. J Clin Periodontol. 2018; 45(Suppl 20): S162–S170.
Cohen, Jérémie F., et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ open, 2016, 6.11: e012799.
Sungkar, S., Chismirina, S., Nasution, A., & Imaduddin, H. (2020). The Effect of Cheese and Milk on Buffering Capacity of Saliva in Children 10-12 Years. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 48, 105-110.
Grzesiak-Gasek, I., & Dębska-Łasut, K. (2025). Occurrence of dental caries, the prevalence of hygiene and dietary habits, and the influence of the workout session on the selected parameters of saliva in youth swimmers. Dental and medical problems.
Yau, J., Fong, T., Wan, A., & Ho, R. (2022). Comparison of passive drool and cotton‐based collection methods for salivary C‐reactive protein measurement. American Journal of Human Biology, 34.
Lagerlöf F. Caries-Protective Factors in Saliva. Advances in Dental Research. 1994;8(2):229-238. doi:10.1177/08959374940080021601
Ainamo, J., & Bay, I. (1975). Problems and proposals for recording gingivitis and plaque. International Dental Journal, 25(4), 229-35.
M. X. Chen, Y. J. Zhong, Q. Q. Dong, H. M. Wong, and Y. F. Wen, “Global, Regional, and National Burden of Severe Periodontitis, 1990–2019: An Analysis of the Global Burden of Disease Study 2019,” Journal of Clinical Periodontology 48, no. 9 (2021): 1165–1188.
G. G. Nascimento, S. Alves-Costa, and M. Romandini, “Burden of Severe Periodontitis and Edentulism in 2021, With Projections up to 2050: The Global Burden of Disease 2021 Study,” Journal of Periodontal Research 59, no. 5 (2024): 823–867.
Dong, A., Proctor, G., & Zaric, S. (2025). Diagnostic Accuracy of Microbiome-Derived Biomarkers in Periodontitis: Systematic Review and Meta-Analysis. Journal of periodontal research.
Murakami S, Mealey BL, Mariotti A, Chapple ILC. Dental plaque-induced gingival conditions. J Clin Periodontol. 2018; 45(Suppl 20): S17-S27. doi: 10.1111/jcpe.12937).
Chapple, I., Abdulkareem, A., Al-Taweel, F., Gul, S., Al-Sharqi, A., & Sha, A. (2023). Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. Journal of Oral Microbiology, 15. https://doi.org/10.1080/20002297.2023.2197779.
Tonetti, Maurizio S.; GREENWELL, Henry; KORNMAN, Kenneth S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. Journal of periodontology, 2018, 89: S159-S172.
J. Liukkonen, U. K. Gürsoy, E. Könönen, et al., “Salivary Biomarkers in Association With Periodontal Parameters and the Periodontitis Risk Haplotype,” Innate Immunity 24, no. 7 (2018): 439–447.
Cafiero, C., Spagnuolo, G., Marenzi, G., Martuscelli, R., Colamaio, M., & Leuci, S. (2021). Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis. Journal of Clinical Medicine, 10.
Akram, H., Salman, S., Najah, A., Saliem, S., Fadhil, R., & Mahmood, A. (2024). Diagnostic ability of salivary TNF-α and RANKL to differentiate periodontitis from periodontal health (case-control study). Journal of Emergency Medicine, Trauma and Acute Care.
Relvas, M., Silvestre, R., Gonçalves, M., Cabral, C., Mendes-Frias, A., Monteiro, L., & Da Costa, A. (2023). Analysis of Salivary Levels of IL-1β, IL-17A, OPG, and RANK-L in Periodontitis Using the 2017 Classification of Periodontal Diseases—An Exploratory Observational Study. Journal of Clinical Medicine, 12
Cloitre, Alexandra, et al. IL-36γ is a pivotal inflammatory player in periodontitis-associated bone loss. Scientific reports, 2019, 9.1: 19257.
Papathanasiou, E., Conti, P., Carinci, F., Lauritano, D., & Theoharides, T. (2020). IL-1 Superfamily Members and Periodontal Diseases. Journal of Dental Research, 99, 1425-1434.
Boutet, M. A.; Bart, G.; Penhoat, M.; Amiaud, J.; Brulin, B.; Charrier, C.; Vigne, S. Distinct expression of interleukin (IL)-36alpha, beta, and gamma, their antagonist IL-36Ra, and IL-38 in psoriasis, rheumatoid arthritis, and Crohn’s disease. Clin. Exp. Immunol. 2016, 1841, 59–73.
Vigne, S.; Palmer, G.; Lamacchia, C.; Martin, P.; Talabot-Ayer, D.; Rodriguez, E.; Ronchi, F.; Sallusto, F.; Dinh, H.; Sims, J. E.; et al. CS16-5. IL-36R Ligands are Potent Regulators of Dendritic and T Cells. Cytokine 2011, 56, 105–106. [CrossRef]).
Mutamba, S.; Allison, A.; Mahida, Y.; Barrow, P.; Foster, N. Expression of IL-1Rrp2 by human myelomonocytic cells is unique to DCs and facilitates DC maturation by IL-1F8 and IL-1F9. Eur. J. Immunol. 2012, 42, 607–617. [CrossRef]).
Xie, L., Huang, Z., Li, H., Liu, X., Zheng, S., & Su, W. (2019). IL-38: A New Player in Inflammatory Autoimmune Disorders. Biomolecules, 9.
Korkmaz, H., Hatipoğlu, M., & Kayar, N. (2023). Interleukin-38: A crucial player in periodontitis. Oral diseases.
Gürsel, M., Bayat, T., Ndar, N., Tak, A., & Karaduman, B. (2024). Investigating the diagnostic potential of IL-1β, IL-10, and IL-36γ in gingival crevicular fluid in patients with different periodontal conditions. Biomarkers, 29, 118-126.
Khurshid, Z., Warsi, I., Moin, S., Slowey, P., Latif, M., Zohaib, S., Zafar, M., & Zafar, M. (2020). Biochemical analysis of oral fluids for disease detection. Advances in clinical chemistry, 100, 205-253. https://doi.org/10.1016/bs.acc.2020.04.005.
Li, F., Yoshizawa, J., Kim, K., Kanjanapangka, J., Grogan, T., Wang, X., Elashoff, D., Ishikawa, S., Chia, D., Liao, W., Akin, D., Yan, X., Lee, M., Choi, R., Kim, S., Kang, S., Bae, J., Sohn, T., Lee, J., Choi, M., Min, B., Lee, J., Kim, J., Kim, Y., Kim, S., & Wong, D. (2018). Discovery and Validation of Salivary Extracellular RNA Biomarkers for Noninvasive Detection of Gastric Cancer. Clinical chemistry, 64(10), 1513-1521. https://doi.org/10.1373/clinchem.2018.290569.
Serdar, C., Guney, Z., Balci, N., Altingoz, S., Serdar, M., & Kurgan, Ş. (2025). Salivary trimethylamine N-oxide: a novel non-invasive marker for periodontal inflammation. Clinical Oral Investigations, 29. https://doi.org/10.1007/s00784-025-06295-4.
Papagerakis, P., Zheng, L., Kim, D., Said, R., Ehlert, A., Chung, K., & Papagerakis, S. (2019). Saliva and Gingival Crevicular Fluid (GCF) Collection for Biomarker Screening. Methods in molecular biology, 1922, 549-562. https://doi.org/10.1007/978-1-4939-9012-2_41.
Pérez-Ruiz, E., Decrop, D., Ven, K., Tripodi, L., Leirs, K., Rosseels, J., Van De Wouwer, M., Geukens, N., De Vos, A., Vanmechelen, E., Winderickx, J., Lammertyn, J., & Spasic, D. (2018). Digital ELISA for the quantification of attomolar concentrations of Alzheimer's disease biomarker protein Tau in biological samples. Analytica chimica acta, 1015, 74-81. https://doi.org/10.1016/j.aca.2018.02.011.
Cohen, L., Cui, N., Cai, Y., Garden, P., Li, X., Weitz, D., & Walt, D. (2020). Single Molecule Protein Detection with Attomolar Sensitivity Using Droplet Digital Enzyme-Linked Immunosorbent Assay. ACS nano. https://doi.org/10.1021/acsnano.0c02378.
Byun, J., Lee, K., Park, Y., Song, D., Min, Y., & Kim, D. (2025). Revisiting ELISA with in situ amplification of biomarkers to boost its sensitivity. Sensors and Actuators B: Chemical. https://doi.org/10.1016/j.snb.2024.136780.
Arya, S., & Estrela, P. (2018). Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection. Sensors (Basel, Switzerland), 18. https://doi.org/10.3390/s18072010.
Japp, N., Souchek, J., Sasson, A., Hollingsworth, M., Batra, S., & Junker, W. (2021). Tumor Biomarker In-Solution Quantification, Standard Production, and Multiplex Detection. Journal of Immunology Research, 2021. https://doi.org/10.1155/2021/9942605.
Murdock, R., Shen, L., Griffin, D., Kelley-Loughnane, N., Papautsky, I., & Hagen, J. (2013). Optimization of a paper-based ELISA for a human performance biomarker. Analytical chemistry, 85(23), 11634-42. https://doi.org/10.1021/ac403040a.
Shi, J., Barman, S., Cheng, S., & Zeng, Y. (2024). Metal-organic framework-interfaced ELISA probe enables ultrasensitive detection of extracellular vesicle biomarkers. Journal of Materials Chemistry B. https://doi.org/10.1039/d4tb00585f.
Maley, A., Garden, P., & Walt, D. (2020). Simplified Digital Enzyme-Linked Immunosorbent Assay Using Tyramide Signal Amplification and Fibrin Hydrogels. ACS sensors. https://doi.org/10.1021/acssensors.0c01661.
Choi, Y., & Lee, K. (2021). Periodontitis as a Risk Factor for Rheumatoid Arthritis: A Matched-Cohort Study. International Dental Journal, 71, 516-521. https://doi.org/10.1016/j.identj.2021.01.006.
Imran, N., Abdulbaqi, H., & Milward, M. (2024). The prevalence of periodontitis in an Iraqi population using the 2017 classification. Journal of Baghdad College of Dentistry. https://doi.org/10.26477/jbcd.v36i2.3668.
Ju, X., Harford, J., Luzzi, L., & Jamieson, L. (2021). Prevalence, extent, and severity of periodontitis among Australian older adults: Comparison of two generations. Journal of Periodontology, 93, 1387-1400. https://doi.org/10.1002/JPER.21-0458.
Renvert, S., Persson, R., & Persson, R. (2013). Tooth loss and periodontitis in older individuals: results from the Swedish National Study on Aging and Care. Journal of periodontology, 84(8), 1134-44. https://doi.org/10.1902/jop.2012.120378.
Eke, P., Borgnakke, W., & Genco, R. (2020). Recent epidemiologic trends in periodontitis in the USA. Periodontology 2000, 82(1), 257-267. https://doi.org/10.1111/prd.12323.
Eke, P., Wei, L., Borgnakke, W., Thornton-Evans, G., Zhang, X., Lu, H., McGuire, L., & Genco, R. (2016). Periodontitis prevalence in adults ≥ 65 years of age in the USA. Periodontology 2000, 72(1), 76-95. https://doi.org/10.1111/prd.12145.
Bengtsson, V., Persson, G., Berglund, J., & Renvert, S. (2021). Periodontitis related to cardiovascular events and mortality: a long-term longitudinal study. Clinical Oral Investigations, 25, 4085-4095. https://doi.org/10.1007/s00784-020-03739-x.
Wulandari, P., Widkaja, D., Nasution, A., Syahputra, A., & Gabrina, G. (2022). Association between age, gender, and education level with the severity of periodontitis in pre-elderly and elderly patients. Dental Journal (Majalah Kedokteran Gigi). https://doi.org/10.20473/j.djmkg.v55.i1.p16-20.
Groenewegen, H., Bierman, W., Delli, K., Dijkstra, P., Nesse, W., Vissink, A., & Spijkervet, F. (2019). Severe periodontitis is more common in HIV-infected patients. The Journal of Infection, 78(3), 171-177. https://doi.org/10.1016/j.jinf.2018.11.008.
Stødle, I., Verket, A., Høvik, H., Sen, A., & Koldsland, O. (2021). Prevalence of periodontitis based on the 2017 classification in a Norwegian population. The HUNT Study. Journal of clinical periodontology. https://doi.org/10.1111/jcpe.13507.
Iao, S., Pei, X., Ouyang, X., Liu, J., Liu, W., & Cao, C. (2020). Natural progression of periodontal diseases in Chinese villagers based on the 2018 classification. Journal of periodontology. https://doi.org/10.1002/JPER.20-0199.
Bongo, A., Brustad, M., Oscarson, N., & Jönsson, B. (2020). Periodontal health in an indigenous Sámi population in Northern Norway: a cross-sectional study. BMC Oral Health, 20. https://doi.org/10.1186/s12903-020-01098-3-3.
Goergen, J., Albandar, J., Oppermann, R., Rösing, C., Susin, C., & Haas, A. (2021). Periodontitis stage and grade are associated with poor oral health-related quality of life: findings from the Porto Alegre Cohort Study. Journal of clinical periodontology. https://doi.org/10.1111/jcpe.13527.
Uy, S., Deng, K., Fok, C., Fok, M., Pelekos, G., & Tonetti, M. (2021). Food intake, masticatory function, tooth mobility, loss of posterior support, and diminished quality of life are associated with more advanced periodontitis stage diagnoses. Journal of clinical periodontology. https://doi.org/10.1111/jcpe.13588.
González-Febles, J., Rodríguez-Lozano, B., Sánchez-Piedra, C., Garnier-Rodríguez, J., Bustabad, S., Hernandez-Gonzalez, M., González-Dávila, E., Sanz, M., & Díaz-González, F. (2020). Association between periodontitis and anti-citrullinated protein antibodies in rheumatoid arthritis patients: a cross-sectional study. Arthritis Research & Therapy, 22. https://doi.org/10.1186/s13075-020-2121-6-020-2121-6.
Rodríguez-Lozano, B., González-Febles, J., Garnier-Rodríguez, J., Dadlani, S., Bustabad-Reyes, S., Sanz, M., Sánchez-Alonso, F., Sánchez-Piedra, C., González-Dávila, E., & Díaz-González, F. (2019). Association between severity of periodontitis and clinical activity in rheumatoid arthritis patients: a case–control study. Arthritis Research & Therapy, 21. https://doi.org/10.1186/s13075-019-1808-z.
Pham, T. (2018). The association between periodontal disease severity and metabolic syndrome in Vietnamese patients. International Journal of Dental Hygiene, 16, 484–491. https://doi.org/10.1111/idh.12350.
Zhao, X., Liu, W., Wu, Z., He, X., Tang, Y., He, Q., Lin, C., Chen, Y., Luo, G., Yu, T., & Wang, X. (2024). Hepatocyte growth factor is protective in the early stage but bone-destructive in the late stage of experimental periodontitis. Journal of periodontal research. https://doi.org/10.1111/jre.13237.
Zamora-Perez, A., Ortiz-García, Y., Lazalde-Ramos, B., Guerrero-Velázquez, C., Gómez-Meda, B., Ramírez-Aguilar, M., & Zúñiga-González, G. (2015). Increased micronuclei and nuclear abnormalities in buccal mucosa and oxidative damage in saliva from patients with chronic and aggressive periodontal diseases. Journal of periodontal research, 50(1), 28-36. https://doi.org/10.1111/jre.12175.
Sczepanik, F., Grossi, M., Casati, M., Goldberg, M., Glogauer, M., Fine, N., & Tenenbaum, H. (2020). Periodontitis is an inflammatory disease of oxidative stress: we should treat it that way. Periodontology 2000, 84(1), 45-68. https://doi.org/10.1111/prd.12342.
How, K., Song, K., & Chan, K. (2016). Porphyromonas gingivalis: An Overview of Periodontopathic Pathogens Below the Gum Line. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00053.
Sato, K., Yamazaki, K., Kato, T., Nakanishi, Y., Tsuzuno, T., Yokoji-Takeuchi, M., Yamada-Hara, M., Miura, N., Okuda, S., Ohno, H., & Yamazaki, K. (2021). Obesity-Related Gut Microbiota Aggravates Alveolar Bone Destruction in Experimental Periodontitis through Elevation of Uric Acid. mBio, 12. https://doi.org/10.1128/mBio.00771-21.
Sonnenschein, S., & Meyle, J. (2015). Local inflammatory reactions in patients with diabetes and periodontitis. Periodontology 2000, 69(1), 221-54. https://doi.org/10.1111/prd.12089.
Durand, R., Roufegarinejad, A., Chandad, F., Rompré, P., Voyer, R., Michalowicz, B., & Emami, E. (2019). Dental caries are positively associated with periodontal disease severity. Clinical Oral Investigations, 23, 3811-3819. https://doi.org/10.1007/s00784-019-02810-6-019-02810-6.
Habibagahi, Z., Khorshidi, H., & Hekmati, S. (2016). Periodontal Health Status among Patients with Behçet's Disease. Scientifica, 2016. https://doi.org/10.1155/2016/7506041.
Kaneko, C., Kobayashi, T., Ito, S., Sugita, N., Murasawa, A., Ishikawa, H., & Tabeta, K. (2021). Association among periodontitis severity, anti-agalactosyl immunoglobulin G titer, and the disease activity of rheumatoid arthritis. Journal of periodontal research. https://doi.org/10.1111/jre.12867.
Ibraheem, W., Fageeh, H., Preethanath, R., Alzahrani, F., Al-Zawawi, A., Divakar, D., & Al-Kheraif, A. (2020). Comparison of RANKL and osteoprotegerin levels in the gingival crevicular fluid of young cigarette- and waterpipe-smokers and individuals using electronic nicotine delivery systems. Archives of oral biology, 115, 104714. https://doi.org/10.1016/j.archoralbio.2020.104714.
Chen, B., Wu, W., Sun, W., Zhang, Q., Yan, F., & Xiao, Y. (2014). RANKL Expression in Periodontal Disease: Where Does RANKL Come From?. BioMed Research International, 2014. https://doi.org/10.1155/2014/731039.
Taubman, M., Valverde, P., Han, X., & Kawai, T. (2005). Immune Response: The Key to Bone Resorption in Periodontal Disease. Journal of Periodontology, 76 Suppl 11S, 2033-2041. https://doi.org/10.1902/jop.2005.76.11-S.2033.
Kawai, T. , Matsuyama, T. , Hosokawa, Y. , Makihira, S. , Seki, M. , Karimbux, N. , Gonçalves, R. , Valverde, P. , Dibart, S. , Li, Y. , Miranda, L. , Ernst, C. , Izumi, Y. , & Taubman, M. ((2006) Band T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal ddisease The American journal of pathology, 169 (3),9987-98 https: //doi. org/10. 2353/AJPATH. 2006. 060180.
Kittaka, M. ,Yoshimoto, T. ,Levitan, M. ,Urata, R. ,Choi, R. ,Teno, Y. ,Xie, Y. ,Kitase, Y. ,Prideaux, M. ,Dallas, S. ,Robling, A. ,& Ueki, Y. (2023). Osteocyte RANKL Drives Bone Resorption in Mouse Ligature‐Induced Periodontitis. Journal of Bone and Mineral Research, 38, 1521 -1540.https: //doi. org/10. 1002/jbmr. 4897.
Wara-Aswapati, N. ,Surarit, R. ,Chayasadom, A. ,Boch, J. ,& Pitiphat, W. (2007). RANKL uupregulation isassociated with periodontitis and Porphyromonas gingivalis. Journal of pPeriodontology,78 (6),1062-9. 060398.
Abdullameer, M. ,& Abdulkareem, A. (2023). Diagnostic potential of salivary interleukin‐17, RANKL, and OPG to differentiate between periodontal health and disease and discriminate stable and unstable periodontitis: A case‐control study. Health Science Reports, 6.
Teodorescu, A. ,Martu, I. ,Teslaru, S. ,Kappenberg-Niţescu, D. ,Goriuc, A. ,Luchian, I. ,Mârțu, M. ,Solomon, S. ,& Martu, S. (2019). Assessment of Salivary Levels of RANKL and OPG in Aggressive versus Chronic Periodontitis. Journal of Immunology Research, 2019.
Asif, S. ,Ahmad, B. ,Hamza, S. ,Taib, H. ,Kassim, N. ,& Zainuddin, S. (2021). Investigation of Salivary RANKL and OPG Levels in Periodontitis Patients at Hospital Universiti Sains Malaysia. European Journal of Dentistry, 16, 173 -178.https: //doi.org/10.1055/s-0041-1731930.
Ochanji, A., Matu, N., & Mulli, T. (2017). Association of salivary RANKL and osteoprotegerin levels with periodontal health. Clinical and Experimental Dental Research, 3, 45-50. https://doi.org/10.1002/cre2.49.
Crotti, T., Smith, M., Hirsch, R., Soukoulis, S., Weedon, H., Capone, M., Ahern, M., & Haynes*, D. (2003). Receptor activator NF kappaB ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis. Journal of periodontal research, 38(4), 380-7. https://doi.org/10.1034/J.1600-0765.2003.00615.X.
Bostancı, N., Ilgenli, T., Emingil, G., Afacan, B., Han, B., Töz, H., Atilla, G., Hughes, F., & Belibasakis, G. (2007). Gingival crevicular fluid levels of RANKL and OPG in periodontal diseases: implications of their relative ratio. Journal of clinical periodontology, 34(5), 370-6. https://doi.org/10.1111/J.1600-051X.2007.01061.X.
Al-Ghurabi BH, Mohssen SM. Salivary Level of RANKL and OPG in Chronic Periodontitis. J Bagh Coll Dent. 2015; 27(1): 189–94. https://doi.org/10.12816/0015286).
Krasavcevic, A., Nikolic, N., Mijailović, I., Čarkić, J., Milinković, I., Jankovic, S., Aleksić, Z., & Milašin, J. (2020). Impact of Notch signaling molecules and bone resorption regulators on clinical parameters in periodontitis. Journal of periodontal research. https://doi.org/10.1111/jre.12801.
Rahman, S., Gv, G., & Mehta, D. (2020). A clinico-microbiological and biochemical study evaluating the adjunctive use of antimicrobial photodynamic therapy and local drug delivery of 1.2% simvastatin gel compared to scaling and root planing alone. Photodiagnosis and photodynamic therapy, 10/2017. https://doi.org/10.1016/j.pdpdt.2020.102017.
Mohammed, S., & Akram, H. (2024). Evaluating the Efficacy of Resveratrol-Containing Mouthwash as an Adjunct Treatment for Periodontitis: A Randomized Clinical Trial. European journal of dentistry. https://doi.org/10.1055/s-0044-1788686.
Karcı, B., Öncü, E., & Doğan, M. (2021). The Effect of Different Dental Implant Surface Characteristics on Bone Immunologic Biomarkers and Microbiologic Parameters: A Randomized Clinical Study. The International Journal of Periodontics & Restorative Dentistry, 41(4), 589-597.
Liu, J., Meng, H., Mao, Y., Zhong, L., Pan, W., & Chen, Q. (2024). IL-36 Regulates Neutrophil Chemotaxis and Bone Loss at the Oral Barrier. Journal of Dental Research, 103, 442-451.
Babaloo, A., Shirmohammadi, A., Sandoghchian, S., Kamalzadeh, A., & Ghasemi, S. (2018). Evaluation of the effect of IL-36γ expression on chronic periodontitis by enhancing the MAPK and TLR4 signaling pathways: A basic research. Journal of Dental Research, Dental Clinics, Dental Prospects, 12, 159-165.
Babaloo, A., Shirmohammadi, A., Ghasemi, S., Sandoghchian, S., Parvan, S., & Fathi, N. (2019). Effect of IL-36γ expression on chronic periodontitis with an increase in the NF-KB signaling pathway. Journal of Advanced Periodontology & Implant Dentistry, 11, 28-33.
Lang, N. P.; Joss, A.; Orsanic, T.; Gusberti, F. A.; Siegrist, B. E. Bleeding on probing. A predictor for the progression of periodontal disease? J. Clin. Periodontol. 1986, 13, 590–596. [CrossRef][PubMed].
Kc, S., Wang, X., & Gallagher, J. (2019). Diagnostic sensitivity and specificity of host-derived salivary biomarkers in periodontal disease amongst adults: A systematic review. Journal of clinical periodontology.
Das, N. (2024). Assessment of IL-38 and IL-40 Levels in Gingival Crevicular Fluid in Gingivitis and Stage III Grade C Periodontitis: A Comparative Clinical Study. South Eastern European Journal of Public Health.
Blanco-Pintos, T., Regueira-Iglesias, A., Seijo-Porto, I., Balsa-Castro, C., Castelo-Baz, P., Nibali, L., & Tomás, I. (2023). Accuracy of periodontitis diagnosis obtained using multiple molecular biomarkers in oral fluids: A systematic review and meta-analysis. Journal of clinical periodontology.
Ebersole, J. L.; Nagarajan, R.; Akers, D.; Miller, C. S. Targeted salivary biomarkers for discrimination of periodontal health and disease(s). Front. Cell Infect. Microbiol. 2015, 5, 62.
Arias‐Bujanda, N., Regueira-Iglesias, A., Balsa‐Castro, C., Nibali, L., Donos, N., & Tomás, I. (2019). Accuracy of single molecular biomarkers in saliva for the diagnosis of periodontitis: a systematic review and meta-analysis. Journal of clinical periodontology.
De Lima, C., Acevedo, A., Grisi, D., Taba, M., Guerra, E., & De Luca Canto, G. (2016). Host-derived salivary biomarkers in diagnosing periodontal disease: systematic review and meta-analysis. Journal of clinical periodontology, 43(6), 492-502. https://doi.org/10.1111/jcpe.12538.
Denkert, C. , Loibl, S. , Müller, B. , Eidtmann, H. , Schmitt, W. , Eiermann, W. , Gerber, B. , Tesch, H. , Hilfrich, J. , Huober, J. , Fehm, T. , Barinoff, J. , Jackisch, C. , Prinzler, J. , Rüdiger, T. , Erbstößer, E. , Blohmer, J. , Budczies, J. , Mehta, K. , & Minckwitz, G. ((2013) Ki67levels as predictive and prognostic parameters in pretherapeutic breast cancer core biopsies: a translational investigation in the neoadjuvant GeparTrio ttrial Annals of oncology: official journal of the European Society for Medical Oncology, 24 (11),22786-93 1https://doi.org/10.1093/annonc/mdt350.
Polley, M., & Dignam, J. (2021). Statistical Considerations in the Evaluation of Continuous Biomarkers. The Journal of Nuclear Medicine, 62, 605-611.
Duarte, P. (2021). Cut Point Identification of Continuous Biomarkers: A Challenge That Goes Beyond Statistical Aspects. The Journal of Nuclear Medicine, 62, 1833-1833. https://doi.org/10.2967/jnumed.121.262905.
Bantis, L., Nakas, C., & Reiser, B. (2013). They constructed confidence regions in the ROC space after estimating the optimal Youden index-based cut-off point. Biometrics, 70. https://doi.org/10.1111/biom.12107.
Ünal, I. (2017). Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach. Computational and Mathematical Methods in Medicine, 2017. https://doi.org/10.1155/2017/3762651.
Sexton, W., Lin, Y., Kryscio, R., Dawson, D., Ebersole, J., & Miller, C. (2011). Salivary biomarkers of periodontal disease in response to treatment. Journal of clinical periodontology, 38(5), 434-41. https://doi.org/10.1111/j.1600-051X.2011.01706.x.
Zucchelli, A., Vetrano, D., Grande, G., Calderón-Larrañaga, A., Fratiglioni, L., Marengoni, A., & Rizzuto, D. (2019). This study compares the prognostic value of geriatric health indicators using a population-based approach. BMC Medicine, 17. https://doi.org/10.1186/s12916-019-1418-2-2.
Viasus, D., Del Rio-Pertuz, G., Simonetti, A., García-Vidal, C., Acosta-Reyes, J., Garavito, A., & Carratalá, J. (2016). Biomarkers for predicting short-term mortality in community-acquired pneumonia: A systematic review and meta-analysis. The Journal of Infection, 72(3), 273-82. https://doi.org/10.1016/j.jinf.2016.01.002.
Cong, S., T., Di, X., Tian, C., Zhao, M., & Wang, K. (2020). Diagnostic value of neutrophil CD64, procalcitonin, and interleukin-6 in sepsis: a meta-analysis. BMC Infectious Diseases, 21. https://doi.org/10.1186/s12879-021-06064-0-021-06064-0.
Relvas, M., Mendes-Frias, A., Gonçalves, M., Salazar, F., López-Jarana, P., Silvestre, R., & Da Costa, A. (2024). Salivary IL-1β, IL-6, and IL-10 Are Key Biomarkers of Periodontitis Severity. International Journal of Molecular Sciences, 25. https://doi.org/10.3390/ijms25158401.
Teles, F., Chandrasekaran, G., Martin, L., Patel, M., Kallan, M., Furquim, C., Hamza, T., Cucchiara, A., Kantarcı, A., Urquhart, O., Sugai, J., & Giannobile, W. (2024). The study examined salivary and serum inflammatory biomarkers both during the progression of periodontitis and after treatment. Journal of Clinical Periodontology, 51, 1619-1631. https://doi.org/10.1111/jcpe.14048.
Kinney, J., Morelli, T., Oh, M., Braun, T., Ramseier, C., Sugai, J., & Giannobile, W. (2014). The study focused on the role of crevicular fluid biomarkers in the progression of periodontal disease. Journal of clinical periodontology, 41(2), 113-120.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Iqbal Hussain Ali, Suzan Ali Salman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.