Association of AXIN2 gene polymorphisms with nonsyndromic oligodontia in Turkish families

Authors

  • Nuriye Dinckan Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey Department of Diagnostic and Biomedical Sciences and Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
  • Zehra Oya Uyguner Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
  • Hulya Kayserili Department of Medical Genetics, Koc University, School of Medicine (KUSOM), Istanbul, 34010, Turkey
  • Ariadne Letra Department of Diagnostic and Biomedical Sciences and Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA

DOI:

https://doi.org/10.5195/d3000.2016.57

Keywords:

AXIN2, WNT, tooth agenesis, oligodontia, association

Abstract

Tooth agenesis is the most common developmental abnormality of the human dentition characterized by the congenital absence of one or more permanent teeth. Oligodontia is the term used to describe severe tooth agenesis, where six or more permanent teeth are missing. The WNT gene pathway regulates multiple developmental processes during craniofacial and tooth development, and variations in WNT pathway genes have been reported in individuals with tooth agenesis. In this study, we investigated the association of 37 SNPs in/nearby 12 WNT pathway genes (WNT3, WNT3A, WNT5A, WNT8A, WNT9B, WNT10A, WNT11, AXIN1, AXIN2, APC, LRP5, LRP6) with oligodontia in 22 multiplex families. Genotypes were generated using Taqman chemistry in a real-time polymerase chain reaction assay.  Family-based association tests were performed using FBAT. Pairwise-haplotype analysis was also performed. Bonferroni correction was used to adjust for multiple testing and P-values ≤ 0.001 were considered statistically significant. We found nominal association for AXIN2 rs7591, located in the 3’ UTR, with oligodontia (P=0.04). In silico analysis of SNP function predicted a binding site for miR-205 with potential impact on AXIN2 expression. Although modest, these results continue to support a role for AXIN2 in the etiology of familial tooth agenesis. 

References

Genetic basis of tooth agenesis. Nieminen P. J Exp Zool B Mol Dev Evol. 2009 Jun 15;312B(4):320-42. PMID:19219933.

A meta-analysis of the prevalence of dental agenesis of permanent teeth. Polder BJ, Van't Hof MA, Van der Linden FP, Kuijpers-Jagtman AM. Community Dent Oral Epidemiol. 2004 Jun;32(3):217-26. PMID: 15151692.

Tooth agenesis: from molecular genetics to molecular dentistry. Matalova E, Fleischmannova J, Sharpe PT, Tucker AS. J Dent Res. 2008 Jul;87(7):617-23. PMID: 18573979.

Anomalies associated with hypodontia of the permanent lateral incisor and second premolar. Symons AL, Stritzel F, Stamation J. J Clin Pediatr Dent. 1993 Winter;17(2):109-11. PMID: 8466838.

Tooth morphogenesis and cell differentiation. Thesleff I, Nieminen P. Curr Opin Cell Biol. 1996 Dec;8(6):844-50. PMID: 8939666.

Two genes for missing teeth. Thesleff I. Nat Genet. 1996 Aug;13(4):379-80. PMID: 8696323.

The genetic basis of inherited anomalies of the teeth. Part 1: clinical and molecular aspects of non-syndromic dental disorders. Bailleul-Forestier I, Molla M, Verloes A, Berdal A. Eur J Med Genet. 2008 Jul-Aug;51(4):273-91. PMID: 18499550.

Isolated oligodontia associated with mutations in EDARADD, AXIN2, MSX1, and PAX9 genes. Bergendal B, Klar J, Stecksén-Blicks C, Norderyd J, Dahl N. Am J Med Genet A. 2011 Jul;155A(7):1616-22. PMID: 21626677.

Exclusion of coding region mutations in MSX1, PAX9 and AX-IN2 in eight patients with severe oligodontia phenotype. Gerits A, Nieminen P, DE Muynck S, Carels C. Orthod Craniofac Res. 2006 Aug;9(3):129-36. PMID: 16918677.

Mutational analysis of AX-IN2, MSX1, and PAX9 in two Mexi-can oligodontia families. Mu YD, Xu Z, Contreras CI, McDaniel JS, Donly KJ, Chen S. Genet Mol Res. 2013 Oct 10;12(4):4446-58. PMID: 24222224.

Expression of Wnt signaling pathway genes during tooth de-velopment. Sarkar L, Sharpe PT. Mech Dev. 1999 Jul;85(1-2):197-200. PMID: 10415363.

Expression patterns of WNT/β-CATENIN signaling mole-cules during human tooth devel-opment. Wang B, Li H, Liu Y, Lin X, Lin Y, Wang Y, Hu X, Zhang Y. J Mol Histol. 2014 Oct;45(5):487-96. PMID: 24647585.

Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, Taketo MM, Morrisey EE, Atit R, Dlugosz AA, Millar SE. Dev Biol. 2008 Jan 1;313(1):210-24. PMID: 18022614.

Wnt5a plays a crucial role in determining tooth size during murine tooth development. Cai J, Mutoh N, Shin JO, Tani-Ishii N, Ohshima H, Cho SW, Jung HS. Cell Tissue Res. 2011 Sep;345(3):367-77. PMID: 21879290.

Mutations in AXIN2 cause familial tooth agenesis and predis-pose to colorectal cancer. Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P. Am J Hum Genet. 2004 May;74(5):1043-50. PMID: 15042511.

Mutations in WNT10A are present in more than half of iso-lated hypodontia cases. van den Boogaard MJ, Créton M, Bronk-horst Y, van der Hout A, Hennekam E, Lindhout D, Cune M, Ploos van Amstel HK. J Med Genet. 2012 May;49(5):327-31. PMID: 22581971.

Loss-of-Function Mutations in the WNT Co-receptor LRP6 Cause Autosomal-Dominant Oli-godontia. Massink MP, Créton MA, Spanevello F, Fennis WM, Cune MS, Savelberg SM, Nijman IJ, Mau-rice MM, van den Boogaard MJ, van Haaften G. Am J Hum Genet. 2015 Oct 1;97(4):621-6. PMID: 26387593.

Mutations in WNT10B Are Identified in Individuals with Oli-godontia. Yu P, Yang W, Han D, Wang X, Guo S, Li J, Li F, Zhang X, Wong SW, Bai B, Liu Y, Du J, Sun ZS, Shi S, Feng H, Cai T. Am J Hum Genet. 2016 Jul 7;99(1):195-201. PMID: 27321946.

Axis inhibition protein 2 (AXIN2) polymorphisms may be a risk factor for selective tooth agenesis. Mostowska A, Biedziak B, Jagodzinski PP. J Hum Genet. 2006;51(3):262-6. PMID: 16432638.

AXIN2 and CDH1 polymor-phisms, tooth agenesis, and oral clefts. Letra A, Menezes R, Gran-jeiro JM, Vieira AR. Birth Defects Res A Clin Mol Teratol. 2009 Feb;85(2):169-73. PMID: 18683894.

Axis inhibition protein 2 (AXIN2) polymorphisms and tooth agenesis. Callahan N, Modesto A, Meira R, Seymen F, Patir A, Vieira AR. Arch Oral Biol. 2009 Jan;54(1):45-9. PMID: 18790474.

Nucleotide variants of genes encoding components of the Wnt signaling pathway and the risk of non-syndromic tooth agen-esis. Mostowska A, Biedziak B, Za-durska M, Dunin-Wilczynska I, Li-aneri M, Jagodzinski PP. Clin Genet. 2013 Nov;84(5):429-40. PMID: 23167694.

Selecting a maximally in-formative set of single-nucleotide polymorphisms for association analyses using linkage disequilibri-um. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Am J Hum Genet. 2004 Jan;74(1):106-20. PMID: 14681826.

High-throughput genotyp-ing with single nucleotide poly-morphisms. Ranade K, Chang MS, Ting CT, Pei D, Hsiao CF, Olivier M, Pesich R, Hebert J, Chen YD, Dzau VJ, Curb D, Olshen R, Risch N, Cox DR, Botstein D. Genome Res. 2001 Jul;11(7):1262-8. PMID: 11435409.

Family-based tests of asso-ciation in the presence of linkage. Lake SL, Blacker D, Laird NM. Am J Hum Genet. 2000 Dec;67(6):1515-25. PMID: 11058432.

miRBase: the microRNA sequence database. Griffiths-Jones S. Methods Mol Biol. 2006;342:129-38. PMID: 16957372.

Genetic basis for tooth malformations: from mice to men and back again. Mitsiadis TA, Luder HU. Clin Genet. 2011 Oct;80(4):319-29. PMID: 21819395.

AXIS inhibition protein 2, orofacial clefts and a family history of cancer. Menezes R, Marazita ML, Goldstein McHenry T, Cooper ME, Bardi K, Brandon C, Letra A, Martin RA, Vieira AR. J Am Dent Assoc. 2009 Jan;140(1):80-4. PMID:19119171.

The axis inhibition protein 2 polymorphisms and non-syndromic orofacial clefts suscep-tibility in a Chinese Han popula-tion. Han Y, Zhou L, Ma L, Li D, Xu M, Yuan H, Ma J, Zhang W, Jiang H, Wu Y, Wang L, Pan Y. J Oral Pathol Med. 2014 Aug;43(7):554-60. PMID: 24484320.

MicroRNAs in Human Dis-eases: From Cancer to Cardiovas-cular Disease. Ha TY. Immune Netw. 2011 Jun;11(3):135-54. PMID: 21860607.

A program of microRNAs controls osteogenic lineage pro-gression by targeting transcription factor Runx2. Zhang Y, Xie RL, Cro-ce CM, Stein JL, Lian JB, van Wijnen AJ, Stein GS. Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9863-8. PMID: 21628588.

MicroRNA-205 suppresses the oral carcinoma oncogenic ac-tivity via down-regulation of Axin-2 in KB human oral cancer cell. Kim JS, Park SY, Lee SA, Park MG, Yu SK, Lee MH, Park MR, Kim SG, Oh JS, Lee SY, Kim CS, Kim HJ, Chun HS, Kim JS, Moon SM, Kim DK. Mol Cell Biochem. 2014 Feb;387(1-2):71-9. PMID: 24166197.

AXIN2-associated autoso-mal dominant ectodermal dyspla-sia and neoplastic syndrome. Marvin ML, Mazzoni SM, Herron CM, Edwards S, Gruber SB, Petty EM. Am J Med Genet A. 2011 Apr;155A(4):898-902. PMID: 21416598.

WNT10A variants are asso-ciated with non-syndromic tooth agenesis in the general popula-tion. Song S, Zhao R, He H, Zhang J, Feng H, Lin L. Hum Genet. 2014 Jan;133(1):117-24. PMID: 24043634.

Downloads

Published

2016-10-03

Issue

Section

Development of Craniofacial Structures