Evaluation of Glenoid Fossa Morphology in Different Facial Growth Patterns: A Cone Beam Computed Tomography Study

Authors

  • Maryam Karandish Orthodontic Department, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
  • Somaye Farmani Orthodontic Department, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
  • Bahar Khademi Orthodontic Department, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
  • Maryam Paknahad Oral and Dental Disease Research Center, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran

DOI:

https://doi.org/10.5195/d3000.2023.172

Keywords:

Glenoid Fossa, Growth Pattern, CBCT, TMJ

Abstract

Purpose: The aim of current study was to assess the glenoid fossa morphology among different vertical skeletal patterns using cone beam computed tomography (CBCT).

Materials and Methods: The CBCT images of 63 patients with Class I sagittal skeletal pattern were classified into three groups based on posterior facial height (PFH)/ Anterior facial height (AFH) ratio. Each group divided in to normal, horizontal and vertical growth pattern groups. Depth, width and inclination of glenoid fossa were measured and assessed on CBCT images. One-way analysis of variance (ANOVA) and Tukey post-hoc test were used to compare mean values of measured variables among the groups.

Results: The width (28.76±0.79) and depth (14.61±0.514) of glenoid fossa were lower in horizontal in comparison to vertical and normal growth patterns (p-value<0.05). Although steepness of glenoid fossa was higher in normal growth pattern (123.8±16.68), no statistically significant differences were seen (p-value: 0.819).

Conclusion: The width and depth of glenoid fossa were significantly lower in horizontal growth pattern.

References

Temporomandibular joint anatomy assessed by CBCT images. Caruso S, Storti E, Nota A, Ehsani S, Gatto R. BioMed Res Int. 2017;2017.

Skin doses on the lens for temporomandibular joint exam in cone beam computed tomography. Oliveira MVLd, Andrade MEA, Batista WO, Campos PSF. Brazil Arch Biol Technol. 2015;58(6):886-90.

Comparison of condylar position in hyperdivergent and hypodivergent facial skeletal types. Girardot Jr RA. Angle Orthodontist. 2001;71(4):240-6.

Changes in articular eminence inclination during the craniofacial growth period. Katsavrias EG. Angle Orthodontist. 2002;72(3):258-64.

Condyle and fossa shape in Class II and Class III skeletal patterns: a morphometric tomographic study. Katsavrias EG, Halazonetis DJ. Ame J Orthodont Dentofac Orthoped. 2005;128(3):337-46.

Three-dimensional evaluation of TMJ parameters in Class II and Class III patients. Krisjane Z, Urtane I, Krumina G, Zepa K. Stomatologija. 2009;11(1):32-6.

Condylar volume and condylar area in class I, class II and class III young adult subjects. Saccucci M, D’Attilio M, Rodolfino D, Festa F, Polimeni A, Tecco S. Head Face Med. 2012;8(1):34.

Correlation between condylar position and different sagittal skeletal facial types. Paknahad M, Shahidi S, Abbaszade H. J Orofacial Orthoped. 2016;77(5):350-6.

Computed tomography evaluation of the temporomandibular joint in Class II Division 1 and Class III malocclusion patients: condylar symmetry and condyle-fossa relationship. Rodrigues AF, Fraga MR, Vitral RWF. Am J Orthodont Dentofac Orthoped. 2009;136(2):199-206.

Computed tomography evaluation of temporomandibular joint alterations in patients with class II division 1 subdivision malocclusions: condyle-fossa relationship. Vitral RWF, de Souza Telles C, Fraga MR, de Oliveira RSMF, Tanaka OM. Am J Orthodont Dentofac Orthopedic. 2004;126(1):48-52.

Three-dimensional cone-beam computed tomography based comparison of condylar position and morphology according to the vertical skeletal pattern. Park IY, Kim JH, Park YH. Korean J Orthodont. 2015;45(2):66-73.

Association between condylar position and vertical skeletal craniofacial morphology: A cone beam computed tomography study. Paknahad M, Shahidi S. Int Orthodont. 2017;15(4):740-51.

Comparison of Glenoid Fossa Morphology Between Different Sagittal Skeletal Pattern Using Cone Beam Computed Tomography. Khademi B, Karandish M, Paknahad M, Farmani S. J Craniofac Surg. 2020;31(8):e789-e92.

Functional and morphologic considerations of the articular eminence. Widman DJ. Angle Orthodont. 1988;58(3):221-36.

Comparative Cone-Beam Computed Tomography Evaluation Of Temporomandibular Joint Position and Morphology in Skeletal Class II Females. Lin YXM, Wu H, Zhang H, Wang S, Qi K. J Int Med Res 2020;48(2):300060519892388. doi: 10.1177/0300060519892388.

Clinical applications of cone-beam computed tomography in dental practice. Scarfe WC, Farman AG, Sukovic P. J Canada Dent Associat. 2006;72(1):75.

Cone beam computed tomography 3D reconstruction of the mandibular condyle. Schlueter B, Kim KB, Oliver D, Sortiropoulos G. Angle Orthodont. 2008;78(5):880-8.

Cephalometrics for you and me. Steiner C. Am J Orthodontic. 1953;39(10):729-55. http://dx.doi.org/10.1016/0002-9416(53)90082-7

The cranial base as an aetiological factor in malocclusion. Hopkin G, Houston W, James G. Angle Orthodontist. 1968;38(3):250-5.

Some relationships between the glenoid fossa position and various skeletal discrepancies. Droel R, Isaacson RJ. Am J Orthodontic. 1972;61(1):64-78.

Tissue reactions in the temporomandibular joint resulting from anterior displacement of the mandible in the monkey. Stöckli PW, Willert HG. Am J Orthodontic Dentofacial Orthopedic. 1971;60(2):142-55.

Cone-beam CT evaluation of temporomandibular joint in permanent dentition according to Angle's classification. Song J, Cheng M, Qian Y, Chu F. Oral Radiol. 2020;36(3):261-6.

Characteristics of articular fossa and condyle in patients with temporomandibular joint complaint. Okur A, Ozkiris M, Kapusuz Z, Karaçavus S, Saydam L. Eur Rev Med Pharmacol Sci. 2012;16(15):2131-5.

Condylar position assessed by magnetic resonance imaging after various bite position registrations. Kandasamy S, Boeddinghaus R, Kruger E. Am J Orthodontic Dentofacial Orthopedic. 2013;144(4):512-7.

Tomographic assessment of temporomandibular joint osseous articular surface contour and spatial relationships associated with disc displacement and disc length. Major PW, Kinniburgh RD, Nebbe B, Prasad NG, Glover KE. Am J Orthodontic Dentofacial Orthopedic. 2002;121(2):152-61.

Assessment of optimal condylar position with limited cone-beam computed tomography. Ikeda K, Kawamura A. Am J Orthodontic Dentofacial Orthopedic. 2009;135(4):495-501.

Cone beam computed tomography imaging in the evaluation of the temporomandibular joint. Barghan S, Merrill R, Tetradis S. J California Dent Associat. 2010;38(1):33-9.

Assessment of condyle and glenoid fossa morphology using CBCT in South-East Asians. Al-koshab M, Nambiar P, John J. PloS one. 2015;10(3):e0121682.

Spatial analysis of condyle position according to sagittal skeletal relationship, assessed by cone beam computed tomography. Arieta-Miranda JM, Silva-Valencia M, Flores-Mir C, Paredes-Sampen NA, Arriola-Guillen LE. Progress Orthodontic. 2013;14(1):36.

Imaging of the temporomandibular joint: a position paper of the American Academy of Oral and Maxillofacial Radiology. Brooks SL, Brand JW, Gibbs SJ, Hollender L, Lurie AG, Omnell K-Å, et al. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 1997;83(5):609-18.

Radiological examination of the articular eminence morphology using cone beam CT. Sümbüllü M, Cağlayan F, Akgül H, Yilmaz A. Dentomaxillofacial Radiol. 2012;41(3):234-40.

Differences in articular-eminence inclination between medieval and contemporary human populations. Kranjčić J, Vojvodić D, Žabarović D, Vodanović M, Komar D, Mehulić K. Arch Oral Biol. 2012;57(8):1147-52.

Assessments of inclinations of the mandibular fossa by computed tomography in an Asian population. Wu C-K, Hsu JT, Shen YW, Chen JH, Shen WC, Fuh LJ. Clin Oral Invest. 2012;16(2):443-50.

Correlation between eminence steepness and condyle disc movements in temporomandibular joints with internal derangements on magnetic resonance imaging. Gökalp H, Türkkahraman H, Bzeizi N. Europ J Orthodontic. 2001;23(5):579-84.

Tomographic assessment of temporomandibular joints in patients with malocclusion. Cohlmia JT, Ghosh J, Sinha PK, Nanda RS, Currier GF. Angle Orthodontist. 1996;66(1):27-36.

Graber T, Vanarsdall R, Vig K. Current principles and techniques1994. 685 p.

Condyle and fossa shape in Class II and Class III skeletal patterns: a morphometric tomographic study. Katsavrias EG, Halazonetis DJ. Am J Orthod Dentofacial Orthop. 2005;128(3):337-46. http://dx.doi.org/10.1016/j.ajodo.2004.05.024 www.ncbi.nlm.nih.gov/pubmed/16168330

Downloads

Published

2023-01-05

Issue

Section

Adults & the Elderly